亚洲乱码中文字幕_亚洲精品少妇30p_中文字幕 久热精品 视频在线_欧美丝袜自拍制服另类_欧美日韩不卡在线_中文字幕在线免费不卡_日本午夜精品一区二区三区电影_精品视频在线看_欧美日韩你懂的_国产在线观看免费一区_日韩视频中午一区_国产一区二区三区观看_综合自拍亚洲综合图不卡区_www.亚洲激情.com_欧美日韩黄色影视_亚洲美女精品一区

名課堂 - 企業(yè)管理培訓(xùn)網(wǎng)聯(lián)系方式

聯(lián)系電話:400-8228-121

值班手機(jī):18971071887

Email:Service@mingketang.com

企業(yè)管理培訓(xùn)分類導(dǎo)航

企業(yè)管理培訓(xùn)公開課計(jì)劃

企業(yè)培訓(xùn)公開課日歷

研發(fā)管理培訓(xùn)公開課

研發(fā)管理培訓(xùn)內(nèi)訓(xùn)課程

熱門企業(yè)管理培訓(xùn)關(guān)鍵字

您所在的位置:名課堂>>公開課>>研發(fā)管理培訓(xùn)公開課

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課程編號(hào)】:MKT013228

【課程名稱】:

Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)

【課件下載】:點(diǎn)擊下載課程綱要Word版

【所屬類別】:研發(fā)管理培訓(xùn)

【時(shí)間安排】:2021年12月16日 到 2021年12月19日7800元/人

2021年01月28日 到 2021年01月29日7800元/人

【授課城市】:深圳

【課程說明】:如有需求,我們可以提供Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)相關(guān)內(nèi)訓(xùn)

【其它城市安排】:珠海 蘇州 成都 杭州 北京 上海 太原 天津 長(zhǎng)沙 中山 福州 重慶 惠州 廈門 廣州 大連 東莞 長(zhǎng)春 青島

【課程關(guān)鍵字】:深圳Python培訓(xùn)

我要報(bào)名

咨詢電話:
手  機(jī): 郵箱:
課程目標(biāo)

1.每個(gè)算法模塊按照“原理講解→分析數(shù)據(jù)→自己動(dòng)手實(shí)現(xiàn)→特征與調(diào)參”的順序。

2.“Python數(shù)據(jù)清洗和特征提取”,提升學(xué)習(xí)深度、降低學(xué)習(xí)坡度。

3.增加網(wǎng)絡(luò)爬蟲的原理和編寫,從獲取數(shù)據(jù)開始,重視將實(shí)踐問題轉(zhuǎn)換成實(shí)際模型的能力,分享工作中的實(shí)際案例或Kaggle案例:廣告銷量分析、環(huán)境數(shù)據(jù)異常檢測(cè)和分析、數(shù)字圖像手寫體識(shí)別、Titanic乘客存活率預(yù)測(cè)、用戶-電影推薦、真實(shí)新聞組數(shù)據(jù)主題分析、中文分詞、股票數(shù)據(jù)特征分析等。

4.強(qiáng)化矩陣運(yùn)算、概率論、數(shù)理統(tǒng)計(jì)的知識(shí)運(yùn)用,掌握機(jī)器學(xué)習(xí)根本。

5.闡述機(jī)器學(xué)習(xí)原理,提供配套源碼和數(shù)據(jù)。

6.以直觀解釋,增強(qiáng)感性理解。

7.對(duì)比不同的特征選擇帶來的預(yù)測(cè)效果差異。

8.重視項(xiàng)目實(shí)踐,重視落地。思考不同算法之間的區(qū)別和聯(lián)系,提高在實(shí)際工作中選擇算法的能力。

9.涉及和講解的部分Python庫有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn。

課程目標(biāo)

本課程特點(diǎn)是從數(shù)學(xué)層面推導(dǎo)最經(jīng)典的機(jī)器學(xué)習(xí)算法,以及每種算法的示例和代碼實(shí)現(xiàn)(Python)、如何做算法的參數(shù)調(diào)試、以實(shí)際應(yīng)用案例分析各種算法的選擇等。

培訓(xùn)對(duì)象

大數(shù)據(jù)分析應(yīng)用開發(fā)工程師、大數(shù)據(jù)分析項(xiàng)目的規(guī)劃咨詢管理人員、大數(shù)據(jù)分析項(xiàng)目的IT項(xiàng)目高管人員、大數(shù)據(jù)分析與挖掘處理算法應(yīng)用工程師、大數(shù)據(jù)分析集群運(yùn)維工程師、大數(shù)據(jù)分析項(xiàng)目的售前和售后技術(shù)支持服務(wù)人員

課程大綱

模塊一 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)1 - 數(shù)學(xué)分析

1. 機(jī)器學(xué)習(xí)的一般方法和橫向比較

2. 數(shù)學(xué)是有用的:以SVD為例

3. 機(jī)器學(xué)習(xí)的角度看數(shù)學(xué)

4. 復(fù)習(xí)數(shù)學(xué)分析

5. 直觀解釋常數(shù)e

6. 導(dǎo)數(shù)/梯度

7. 隨機(jī)梯度下降

8. Taylor展式的落地應(yīng)用

9. gini系數(shù)

10. 凸函數(shù)

11. Jensen不等式

12. 組合數(shù)與信息熵的關(guān)系

模塊二 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)2 - 概率論與貝葉斯先驗(yàn)

1. 概率論基礎(chǔ)

2. 古典概型

3. 貝葉斯公式

4. 先驗(yàn)分布/后驗(yàn)分布/共軛分布

5. 常見概率分布

6. 泊松分布和指數(shù)分布的物理意義

7. 協(xié)方差(矩陣)和相關(guān)系數(shù)

8. 獨(dú)立和不相關(guān)

9. 大數(shù)定律和中心極限定理的實(shí)踐意義

10. 深刻理解最大似然估計(jì)MLE和最大后驗(yàn)估計(jì)MAP

11. 過擬合的數(shù)學(xué)原理與解決方案

模塊三 機(jī)器學(xué)習(xí)的數(shù)學(xué)基礎(chǔ)3 - 矩陣和線性代數(shù)

1. 線性代數(shù)在數(shù)學(xué)科學(xué)中的地位

2. 馬爾科夫模型

3. 矩陣乘法的直觀表達(dá)

4. 狀態(tài)轉(zhuǎn)移矩陣

5. 矩陣和向量組

6. 特征向量的思考和實(shí)踐計(jì)算

7. QR分解

8. 對(duì)稱陣、正交陣、正定陣

9. 數(shù)據(jù)白化及其應(yīng)用

10. 向量對(duì)向量求導(dǎo)

11. 標(biāo)量對(duì)向量求導(dǎo)

12. 標(biāo)量對(duì)矩陣求導(dǎo)工作機(jī)制

模塊四 Python基礎(chǔ)1 - Python及其數(shù)學(xué)庫

1. 解釋器Python2.7與IDE:Anaconda/Pycharm

2. Python基礎(chǔ):列表/元組/字典/類/文件

3. Taylor展式的代碼實(shí)現(xiàn)

4. numpy/scipy/matplotlib/panda的介紹和典型使用

5. 多元高斯分布

6. 泊松分布、冪律分布

7. 典型圖像處理

8. 蝴蝶效應(yīng)

9. 分形與可視化

模塊五 Python基礎(chǔ)2 - 機(jī)器學(xué)習(xí)庫

1. scikit-learn的介紹和典型使用

2. 損失函數(shù)的繪制

3. 多種數(shù)學(xué)曲線

4. 多項(xiàng)式擬合

5. 快速傅里葉變換FFT

6. 奇異值分解SVD

7. Soble/Prewitt/Laplacian算子與卷積網(wǎng)絡(luò)

8. 卷積與(指數(shù))移動(dòng)平均線

9. 股票數(shù)據(jù)分析

模塊六 Python基礎(chǔ)3 - 數(shù)據(jù)清洗和特征選擇

1. 實(shí)際生產(chǎn)問題中算法和特征的關(guān)系

2. 股票數(shù)據(jù)的特征提取和應(yīng)用

3. 一致性檢驗(yàn)

4. 缺失數(shù)據(jù)的處理

5. 環(huán)境數(shù)據(jù)異常檢測(cè)和分析

6. 模糊數(shù)據(jù)查詢和數(shù)據(jù)校正方法、算法、應(yīng)用

7. 樸素貝葉斯用于鳶尾花數(shù)據(jù)

8. GaussianNB/MultinomialNB/BernoulliNB

9. 樸素貝葉斯用于18000+篇/Sogou新聞文本的分類

模塊七 回歸

1. 線性回歸

2. Logistic/Softmax回歸

3. 廣義線性回歸

4. L1/L2正則化

5. Ridge與LASSO

6. Elastic Net

7. 梯度下降算法:BGD與SGD

8. 特征選擇與過擬合

模塊八 Logistic回歸

1. Sigmoid函數(shù)的直觀解釋

2. Softmax回歸的概念源頭

3. Logistic/Softmax回歸

4. 最大熵模型

5. K-L散度

6. 損失函數(shù)

7. Softmax回歸的實(shí)現(xiàn)與調(diào)參

模塊九 回歸實(shí)踐

1. 機(jī)器學(xué)習(xí)sklearn庫介紹

2. 線性回歸代碼實(shí)現(xiàn)和調(diào)參

3. Softmax回歸代碼實(shí)現(xiàn)和調(diào)參

4. Ridge回歸/LASSO/Elastic Net

5. Logistic/Softmax回歸

6. 廣告投入與銷售額回歸分析

7. 鳶尾花數(shù)據(jù)集的分類

8. 交叉驗(yàn)證

9. 數(shù)據(jù)可視化

模塊十 決策樹和隨機(jī)森林

1. 熵、聯(lián)合熵、條件熵、KL散度、互信息

2. 最大似然估計(jì)與最大熵模型

3. ID3、C4.5、CART詳解

4. 決策樹的正則化

5. 預(yù)剪枝和后剪枝

6. Bagging

7. 隨機(jī)森林

8. 不平衡數(shù)據(jù)集的處理

9. 利用隨機(jī)森林做特征選擇

10. 使用隨機(jī)森林計(jì)算樣本相似度

11. 數(shù)據(jù)異常值檢測(cè)

模塊十一 隨機(jī)森林實(shí)踐

1. 隨機(jī)森林與特征選擇

2. 決策樹應(yīng)用于回歸

3. 多標(biāo)記的決策樹回歸

4. 決策樹和隨機(jī)森林的可視化

5. 葡萄酒數(shù)據(jù)集的決策樹/隨機(jī)森林分類

6. 波士頓房?jī)r(jià)預(yù)測(cè)

模塊十二 提升

1. 提升為什么有效

2. 梯度提升決策樹GBDT

3. XGBoost算法詳解

4. Adaboost算法

5. 加法模型與指數(shù)損失

模塊十三 提升實(shí)踐

1. Adaboost用于蘑菇數(shù)據(jù)分類

2. Adaboost與隨機(jī)森林的比較

3. XGBoost庫介紹

4. Taylor展式與學(xué)習(xí)算法

5. KAGGLE簡(jiǎn)介

6. 泰坦尼克乘客存活率估計(jì)

模塊十四 SVM

1. 線性可分支持向量機(jī)

2. 軟間隔的改進(jìn)

3. 損失函數(shù)的理解

4. 核函數(shù)的原理和選擇

5. SMO算法

6. 支持向量回歸SVR

模塊十五 SVM實(shí)踐

1. libSVM代碼庫介紹

2. 原始數(shù)據(jù)和特征提取

3. 葡萄酒數(shù)據(jù)分類

4. 數(shù)字圖像的手寫體識(shí)別

5. SVR用于時(shí)間序列曲線預(yù)測(cè)

6. SVM、Logistic回歸、隨機(jī)森林三者的橫向比較

模塊十六 聚類(一)

1. 各種相似度度量及其相互關(guān)系

2. Jaccard相似度和準(zhǔn)確率、召回率

3. Pearson相關(guān)系數(shù)與余弦相似度

4. K-means與K-Medoids及變種

5. AP算法(Sci07)/LPA算法及其應(yīng)用

模塊十七 聚類(二)

1. 密度聚類DBSCAN/DensityPeak(Sci14)

2. DensityPeak(Sci14)

3. 譜聚類SC

4. 聚類評(píng)價(jià)AMI/ARI/Silhouette

5. LPA算法及其應(yīng)用

模塊十八 聚類實(shí)踐

1. K-Means++算法原理和實(shí)現(xiàn)

2. 向量量化VQ及圖像近似

3. 并查集的實(shí)踐應(yīng)用

4. 密度聚類的代碼實(shí)現(xiàn)

5. 譜聚類用于圖片分割

模塊十九 EM算法

1. 最大似然估計(jì)

2. Jensen不等式

3. 樸素理解EM算法

4. 精確推導(dǎo)EM算法

5. EM算法的深入理解

6. 混合高斯分布

7. 主題模型pLSA

模塊二十 EM算法實(shí)踐

1. 多元高斯分布的EM實(shí)現(xiàn)

2. 分類結(jié)果的數(shù)據(jù)可視化

3. EM與聚類的比較

4. Dirichlet過程EM

5. 三維及等高線等圖件的繪制

6. 主題模型pLSA與EM算法

模塊二十一 主題模型LDA

1. 貝葉斯學(xué)派的模型認(rèn)識(shí)

2. Beta分布與二項(xiàng)分布

3. 共軛先驗(yàn)分布

4. Dirichlet分布

5. Laplace平滑

6. Gibbs采樣詳解

模塊二十二 LDA實(shí)踐

1. 網(wǎng)絡(luò)爬蟲的原理和代碼實(shí)現(xiàn)

2. 停止詞和高頻詞

3. 動(dòng)手自己實(shí)現(xiàn)LDA

4. LDA開源包的使用和過程分析

5. Metropolis-Hastings算法

6. MCMC

7. LDA與word2vec的比較

8. TextRank算法與實(shí)踐

模塊二十三 隱馬爾科夫模型HMM

1. 概率計(jì)算問題

2. 前向/后向算法

3. HMM的參數(shù)學(xué)習(xí)

4. Baum-Welch算法詳解

5. Viterbi算法詳解

6. 隱馬爾科夫模型的應(yīng)用優(yōu)劣比較

模塊二十四 HMM實(shí)踐

1. 動(dòng)手自己實(shí)現(xiàn)HMM用于中文分詞

2. 多個(gè)語言分詞開源包的使用和過程分析

3. 文件數(shù)據(jù)格式UFT-8、Unicode

4. 停止詞和標(biāo)點(diǎn)符號(hào)對(duì)分詞的影響

5. 前向后向算法計(jì)算概率溢出的解決方案

6. 發(fā)現(xiàn)新詞和分詞效果分析

7. 高斯混合模型HMM

8. GMM-HMM用于股票數(shù)據(jù)特征提取

模塊二十五 課堂提問與互動(dòng)討論

張老師

張老師:阿里大數(shù)據(jù)高級(jí)專家,國內(nèi)資深的Spark、Hadoop技術(shù)專家、虛擬化專家,對(duì)HDFS、MapReduce、HBase、Hive、Mahout、Storm、spark和openTSDB等Hadoop生態(tài)系統(tǒng)中的技術(shù)進(jìn)行了多年的深入的研究,更主要的是這些技術(shù)在大量的實(shí)際項(xiàng)目中得到廣泛的應(yīng)用,因此在Hadoop開發(fā)和運(yùn)維方面積累了豐富的項(xiàng)目實(shí)施經(jīng)驗(yàn)。近年主要典型的項(xiàng)目有:某電信集團(tuán)網(wǎng)絡(luò)優(yōu)化、中國移動(dòng)某省移動(dòng)公司請(qǐng)賬單系統(tǒng)和某省移動(dòng)詳單實(shí)時(shí)查詢系統(tǒng)、中國銀聯(lián)大數(shù)據(jù)數(shù)據(jù)票據(jù)詳單平臺(tái)、某大型銀行大數(shù)據(jù)記錄系統(tǒng)、某大型通信運(yùn)營商全國用戶上網(wǎng)記錄、某省交通部門違章系統(tǒng)、某區(qū)域醫(yī)療大數(shù)據(jù)應(yīng)用項(xiàng)目、互聯(lián)網(wǎng)公共數(shù)據(jù)大云(DAAS)和構(gòu)建游戲云(Web Game Daas)平臺(tái)項(xiàng)目等。

我要報(bào)名

在線報(bào)名:Python大數(shù)據(jù)核心技術(shù)實(shí)戰(zhàn)(深圳)

亚洲乱码中文字幕_亚洲精品少妇30p_中文字幕 久热精品 视频在线_欧美丝袜自拍制服另类_欧美日韩不卡在线_中文字幕在线免费不卡_日本午夜精品一区二区三区电影_精品视频在线看_欧美日韩你懂的_国产在线观看免费一区_日韩视频中午一区_国产一区二区三区观看_综合自拍亚洲综合图不卡区_www.亚洲激情.com_欧美日韩黄色影视_亚洲美女精品一区

            国产欧美在线一区二区| 成人动漫一区二区三区| 国产亚洲欧美日韩俺去了| 久久久高清一区二区三区| 国产日韩影视精品| 国产精品久久久久久久久久久免费看 | 在线观看91精品国产入口| 欧美在线免费观看视频| 欧美一二三四区在线| 久久精品一二三| 亚洲色图欧美在线| 麻豆久久久久久| 不卡视频在线看| 欧美日韩国产免费一区二区三区 | 美女精品自拍一二三四| 国产成人三级在线观看| 91在线短视频| 在线观看亚洲视频啊啊啊啊| 欧美精品色一区二区三区| 国产亚洲综合性久久久影院| 亚洲线精品一区二区三区 | 久久偷看各类wc女厕嘘嘘偷窃| 色涩成人影视在线播放| 91精品国产手机| 亚洲视频一二三区| 国产酒店精品激情| 久久国产精品99久久久久久丝袜 | 久久综合久久久| 欧美日韩国产精品成人| 成人欧美一区二区三区小说| 国内精品自线一区二区三区视频| 国产在线一区二区三区欧美| 欧美日韩在线不卡| 亚洲欧美日韩电影| 高清不卡一区二区| 日韩欧美视频一区二区| 精品国产乱码久久久久久久久| 亚洲国产日韩综合久久精品| 99久久精品国产麻豆演员表| 中文字幕欧美日韩一区二区三区 | 欧美日韩久久不卡| 亚洲欧美激情插| 成人av手机在线观看| 一道精品一区二区三区| 欧美激情艳妇裸体舞| 国产一区二三区好的| 成人自拍偷拍| 欧美精品日日鲁夜夜添| 亚洲成人黄色小说| 国产精品久久亚洲7777| 日韩欧美国产综合| 久久丁香综合五月国产三级网站| 国产一区二区三区四区五区加勒比 | 26uuu精品一区二区| 日韩精品午夜视频| 蜜桃av噜噜一区二区三区| 26uuu国产在线精品一区二区| 久久国产精品72免费观看| 日韩在线导航| 亚洲欧洲国产日韩| 国产精品区一区| 久久香蕉国产线看观看99| 国产精品1区2区| 欧美三级电影在线看| 香蕉av福利精品导航| 欧洲亚洲一区二区| 综合分类小说区另类春色亚洲小说欧美 | 色婷婷精品久久二区二区蜜臂av| 亚洲精品日日夜夜| 精品高清视频| 国产精品三级在线观看| 超碰97人人在线| 久久免费电影网| 成人深夜福利app| 欧美一区二区视频在线观看| 精品伊人久久久久7777人| 在线观看网站黄不卡| 日本中文字幕一区二区视频| 一区二区三区四区五区视频| 亚洲一区二区视频在线| 日韩成人在线资源| 亚洲国产精品尤物yw在线观看| 六十路精品视频| 一区二区三区欧美视频| 日韩在线电影一区| 亚洲成人免费观看| 在线中文字幕一区二区| 秋霞影院一区二区| 欧美日韩亚洲综合一区二区三区| 久久国产精品99久久人人澡| 欧美性感一类影片在线播放| 久久不见久久见免费视频1| 欧美视频精品在线观看| 韩国成人福利片在线播放| 5858s免费视频成人| 成人小视频免费观看| 久久综合色8888| 国产精品久久久久久久久婷婷 | 美腿丝袜在线亚洲一区| 精品婷婷伊人一区三区三| 免费人成精品欧美精品| 欧美午夜理伦三级在线观看| 国产美女视频一区| 欧美哺乳videos| 成人在线看片| 亚洲一区免费视频| 在线观看成人小视频| 国产精品一二三在| 国产色综合久久| 日韩福利影院| 精品一区二区日韩| 久久久久久免费毛片精品| 久久久久久国产精品mv| 亚洲成人www| 欧美日韩成人综合天天影院 | 天堂一区二区在线| 欧美日韩久久一区| 91蜜桃网站免费观看| 亚洲另类色综合网站| 一级二级三级欧美| 国产成人在线影院| 中文字幕永久在线不卡| 永久久久久久| 波多野结衣在线一区| 亚洲视频一区二区免费在线观看| 一区二区在线不卡| 成人福利在线看| 亚洲综合丝袜美腿| 日韩一区二区高清| 精品在线一区| 狠狠v欧美v日韩v亚洲ⅴ| 国产日产欧美一区| 影音先锋欧美资源| 91在线精品一区二区三区| 亚洲一区二区四区蜜桃| 日韩午夜电影av| 天天久久人人| 99r国产精品| 日韩国产一区二| 国产亚洲精品bt天堂精选| 一本一道久久久a久久久精品91| 成人免费看片app下载| 一区二区三区丝袜| 日韩免费看网站| 先锋在线资源一区二区三区| www.在线成人| 偷拍与自拍一区| 国产女主播一区| 欧美丝袜自拍制服另类| 国产在线精品一区| 懂色av中文字幕一区二区三区| 亚洲免费av高清| 日韩精品自拍偷拍| 亚洲午夜激情| 国产精品久久精品国产| 国产美女精品在线| 亚洲成人精品影院| 日本一区二区三区高清不卡 | 亚洲一区二区三区免费视频| 日韩视频免费观看高清完整版在线观看| 精品一区二区三区日本| 福利电影一区二区| 丝袜美腿亚洲色图| 亚洲欧美日韩系列| 久久久www成人免费毛片麻豆 | 一区二区三区精品视频| 国产婷婷色一区二区三区在线| 欧美日韩一级片在线观看| 天堂√在线观看一区二区| 国产精品v欧美精品∨日韩| 国产99久久久国产精品| 裸体健美xxxx欧美裸体表演| 一区二区三区四区亚洲| 欧美激情在线一区二区三区| 日韩一本二本av| 欧美日韩和欧美的一区二区| 一本一道久久a久久综合精品| 久久精品国产精品国产精品污| 97久久超碰精品国产| 岛国av在线一区| 国产成a人亚洲| 国产一区二区三区蝌蚪| 久久99国产精品成人| 日韩不卡一区二区| 天天色 色综合| 午夜国产精品一区| 亚洲国产成人av网| 一区二区三区四区在线| 色偷偷一区二区三区| 香蕉久久夜色| 日本欧美色综合网站免费| 成人国产1314www色视频| av电影在线观看一区| 成人爽a毛片一区二区免费| 国产一区二区免费看| 国产一区二区三区四| 韩国av一区二区三区在线观看 | 91麻豆精东视频| 成人高清视频在线观看| 韩日av一区二区|